
Scandinavian Journal of Statistics, Vol. 44: 268 –284, 2017

doi: 10.1111/sjos.12253
© 2016 Board of the Foundation of the Scandinavian Journal of Statistics. Published by Wiley Publishing Ltd.

Unified Inference for Sparse and Dense
Longitudinal Data in Time-varying
Coefficient Models
YIXIN CHEN
Department of Biostatistics and Programming, Sanofi Genzyme

WEIXIN YAO
Department of Statistics, University of California, Riverside

ABSTRACT. Time-varying coefficient models are widely used in longitudinal data analysis. These
models allow the effects of predictors on response to vary over time. In this article, we consider
a mixed-effects time-varying coefficient model to account for the within subject correlation for
longitudinal data. We show that when kernel smoothing is used to estimate the smooth functions
in time-varying coefficient models for sparse or dense longitudinal data, the asymptotic results
of these two situations are essentially different. Therefore, a subjective choice between the sparse
and dense cases might lead to erroneous conclusions for statistical inference. In order to solve this
problem, we establish a unified self-normalized central limit theorem, based on which a unified
inference is proposed without deciding whether the data are sparse or dense. The effectiveness of the
proposed unified inference is demonstrated through a simulation study and an analysis of Baltimore
MACS data.
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1. Introduction

Longitudinal data sets arise in biostatistics and lifetime testing problems when the responses of
the individuals are recorded repeatedly over a period of time. Examples can be found in clinical
trials, follow-up studies for monitoring disease progression, and observational cohort studies.
In many longitudinal studies, repeated measurements of the response variable are collected at
irregular and possibly subject-specific time points. Therefore, the measurements within each
subject are possibly correlated with each other, and data are often highly unbalanced, but dif-
ferent subjects can be assumed to be independent. Typically, the scientific interest is either in
the pattern of change over time of the outcome measures or more simply in the dependence of
the outcome on the covariates.

A useful nonparametric model to quantify the influence of covariates other than time is
the time-varying coefficient model, in which coefficients are allowed to change smoothly over
time. Let ¹.yij ; xi .tij /; tij /I i D 1; 2; : : : ; nI j D 1; 2; : : : ; ni º be a longitudinal sample from n

randomly selected subjects, where tij is the time when the j th measurement of the i th subject
is made and assumed to have bounded support, ni is the number of repeated measurements

of the i th subject, yij is the response and xi .tij / D xij D
�
x0
i
; x1
i
.tij /; : : : ; x

k
i
.tij /

�T
are the

.k C 1/-dimensional covariates for the i th subject at time tij , where x0
i
D 1 is an optional

intercept. The total number of observations in this sample is N D
Pn
iD1 ni . The time-varying

coefficient model can be written as

yij D xTijˇ.tij /C �i .tij /; (1.1)

where ˇ.t/ D .ˇ0.t/; ˇ1.t/; : : : ; ˇk.t//
T for all t � 0 are smooth functions of t , �i .t/ is a

realization of a zero-mean stochastic process �.t/, and xij and �i are independent.
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To better account for the local correlation structure of the longitudinal data, similar to the
nonparametric mixed-effects model used by Wu & Zhang (2002) and Kim & Zhao (2013),
we add a subject-specific random trajectory vi .�/ to model (1.1) and consider the following
mixed-effects time-varying coefficient model

yij D xTijˇ.tij /C vi .tij /C �.tij /�ij ; (1.2)

where vi .t/ is a realization of a mean 0 process with a covariance function �.t; t
0
/ D

cov
°
vi .t/; vi .t

0
/
±
D EŒvi .t/vi .t

0
/�, �ij are errors with E.�ij / D 0 and E.�2

ij
/ D 1, and vi .t/

and �ij are assumed to be independent. Model (1.2) is basically the same as the model of
Hoover et al. (1998) and is a special case of the model investigated by Liang et al. (2003) and
Tian & Wu (2014), which also includes subject-specific coefficients. Our primary goal in this
article is to estimate the varying coefficients ˇ.t/ and construct confidence intervals for them.

Longitudinal data can be identified as sparse or dense according to the number of measure-
ments within each subject. Statistical analyses for sparse or dense longitudinal data have been a
subject of intense investigation in the recent ten years. Please see, for example, Yao et al. (2005)
and Ma et al. (2012) for the studies of the sparse longitudinal data when ni is assumed to be
bounded or follows a given distribution with E.ni / <1; see, for example, Fan & Zhang (2000)
and Zhang & Chen (2007) for the studies of the dense longitudinal data when ni !1. Kim &
Zhao (2013) specified the sparse and dense cases clearly. Here, we adopt their assumptions for
the number of repeated measurements of each subject under these two scenarios:

� Sparse longitudinal data: n1; n2; : : : ; nn are independent and identically distributed
positive-integer-valued random variables with E.ni / <1;

� Dense longitudinal data: min1�i�n.ni / �Mn for some Mn !1 as n!1.

Other assumptions regarding the number of repeated measurements within each subject were
also used to study asymptotic behaviours of local polynomial estimators in varying coefficient
models. These assumptions are more or less similar to sparse or dense longitudinal data def-
initions described earlier. For example, in Hoover et al. (1998) and Wu & Chiang (2000), the
asymptotic inference was established under the assumption of max1�i�n.niN�1/ ! 0 as
n!1. This assumption covers the sparse longitudinal data condition defined earlier but does
not meet the definition of dense longitudinal data. In practice, it is well known that the bound-
ary between sparse and dense cases is not always clear. A subjective choice between sparse and
dense cases may pose challenges for statistical inference. Furthermore, asymptotic properties
of estimators could be different under sparse and dense assumptions. For example, as pointed
out in Wu & Chiang (2000), estimators proposed in Hoover et al. (1998) may not be consis-
tent under the dense data setting. Li & Hsing (2010) established a uniform convergence rate
for weighted local linear estimation of mean and variance functions for functional/longitudinal
data. Nevertheless, Kim & Zhao (2013) showed that convergence rates and limiting variances
under sparse and dense assumptions are different. This motivated them to develop unified
nonparametric approaches to perform longitudinal data analysis without deciding whether the
data are dense or sparse. However, Kim & Zhao (2013) only considered estimating the mean
response curve without the presence of covariates.

In this article, we use the mixed-effects time-varying coefficient model (1.2) to take covariates
other than time into account. The time-varying coefficient part, ˇ.t/, in this model describes
the effect of interest. The model considered by Kim & Zhao (2013) is a special case of ours if
xij=1. We first show that when using kernel smoothing to estimate smooth functions for sparse
or dense longitudinal data, asymptotic results of these two situations are essentially different.
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Therefore, a subjective choice between sparse and dense cases could lead to wrong conclusions
for statistical inference. In order to solve this problem, motivated by Kim & Zhao (2013), we
establish a unified self-normalized central limit theorem, based on which a unified inference
is proposed that can adapt to both sparse and dense cases. The resulting unified confidence
interval is simple to compute and use in practice. The effectiveness of the proposed unified
inference is demonstrated through a simulation study and an analysis of Baltimore MACS data.

This article is organized as follows. In section 2, we first introduce a sample size weighted
local constant estimator of the smooth functions ˇ.t/ and provide asymptotic properties for
both sparse and dense longitudinal data. Under the mixed-effects time-varying coefficient
model setting, we then propose a unified convergence theory based on a self-normalization
technique. In section 3, we provide numerical results from a simulation study and use the Balti-
more MACS data to demonstrate the performance of the proposed unified approach. Section 4
contains some discussion. Regularity conditions and proofs are assembled in the Appendix.

2. A unified approach for longitudinal data

2.1. Estimation method

Hoover et al. (1998) proposed a local constant fit for the time-varying coefficient model. How-
ever, they did not consider the effect of repeated measurements for each subject. Similar to Li
& Hsing (2010), we consider a sample size weighted local constant estimation method for the
model (1.2). Let f .�/ be the density function of tij and let t be an interior point of the support
of f .�/. The weighted local constant estimator we consider is

Ǒ .t/ D arg min
ˇ

nX
iD1

1

ni

niX
jD1

h
yij � xTijˇ.t/

i2
K

�
tij � t

hn

�
D H�1n gn; (2.1)

where K.�/ is a kernel function that is symmetric about 0 and satisfies
R
R
K.u/ du D 1 and

hn > 0 is a bandwidth, depending on n, with

Hn D
nX
iD1

1

ni

niX
jD1

xijxTijK
�
tij � t

hn

�
; gn D

nX
iD1

1

ni

niX
jD1

xijyijK
�
tij � t

hn

�
: (2.2)

Similar to the estimator considered by Kim & Zhao (2013), the just shown estimator does
not take within-subject correlations into account for the simplicity of explanation. How-
ever, the statistical inference we establish in this article takes within-subject correlations into
account and is based on the model assumption (1.2). Based on Lin & Carroll (2000), the work-
ing independence kernel regression estimate Ǒ .t/ of (2.1) is still consistent and can achieve
optimal convergence rate. However, the working independence estimate might lose some effi-
ciency compared with many proposed methods that incorporate within-subject correlations
into nonparametric regression estimator. See, for example, Fan et al. (2007), Fan & Wu (2008),
Pourahmadi (2007), Pan & Mackenzie (2003), Ye & Pan (2006), Zhang & Leng (2012), Yao &
Li (2013) and Zhang et al. (2015).

2.2. Asymptotic properties for sparse and dense longitudinal data

Based on sparse and dense cases specified in Kim & Zhao (2013), we will show that convergence
rates and limiting variances of Ǒ .t/ are different for sparse and dense longitudinal data. To gain
intuition about this, we decompose the difference between the estimated value Ǒ .t/ and the true
value ˇ.t/ in the following way:
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Ǒ .t/ � ˇ.t/ �H�1n

nX
iD1

1

ni

niX
jD1

xij
h
xTijˇ.tij / � xTijˇ.t/

i
K

�
tij � t

hn

�
D H�1n

nX
iD1

�i ;

(2.3)

where the asymptotic distribution of Ǒ .t/ is determined by the right-hand side, with

�i D
1

ni

niX
jD1

�ij ; �ij D xij
�
vi .tij /C �.tij /�ij

�
K

�
tij � t

hn

�
: (2.4)

Based on the previous definition �.t; t
0
/ D cov

°
vi .t/; vi .t

0
/
±
D E

h
vi .t/vi .t

0
/
i

and

E
�
�ij �

T

ij
0

	
D E

°
E
�
�ij �

T

ij
0 j tij ; tij 0

	±
, we have, for j ¤ j

0
,

E
�
�ij �

T

ij
0

	
DE

²
G.tij ; tij 0 /�.tij ; tij 0 /K

�
tij � t

hn

�
K

�
tij 0 � t

hn

�³
� h2nG.t; t/f 2.t/�.t; t/;

(2.5)

where G.tij ; tij 0 / D E
�

xijxT
ij
0 j tij ; tij 0

	
and G.t; t/ D lim

t
0
!t

G.t; t
0
/. Throughout this article,

an � bn means that an=bn ! 1. For the same subject and same time point,

E
�
�ij �

T
ij

	
D E

²
�.tij /

h
�.tij ; tij /C �

2.tij /
i
K2

�
tij � t

hn

�³

� �.t/hnf .t/ k

h
�.t; t/C �2.t/

i
;

(2.6)

where �.tij / D E
�

xijxT
ij
jtij

	
and  K D

R
R
K2.u/ du. Because

var.�i jni / D n
�2
i

8<
:
niX
jD1

E
�
�ij �

T
ij

	
C

X
1�j¤j

0
�ni

E
�
�ij �

T

ij
0

	9=
; ;

then by (2.5) and (2.6), we have the following result:

var.�i jni / �
1

ni
�.t/hnf .t/ K

h
�.t; t/C �2.t/

i
C

�
1 �

1

ni

�
G.t; t/h2nf

2.t/�.t; t/: (2.7)

Under the sparse assumption that ni ’s are independent and identically distributed with
E.ni / < 1, we have, var.�i jni / � �.t/hnf .t/ K

�
�.t; t/C �2.t/

�
=ni as hn ! 0; under

the dense assumption that min1�i�n.ni / � Mn for some Mn ! 1 as n ! 1, we
have var.�i jni / � G.t; t/h2nf

2.t/�.t; t/ with Mnhn ! 1. Therefore, limiting variances for
sparse and dense cases are substantially different. We state asymptotic properties for these two
scenarios in the following theorem.

Theorem 2.1. Let

�.t/ D

"
ˇ
0

.t/f
0
.t/

f .t/
C
ˇ
00

.t/

2
C ��1.t/�

0

.t/ˇ
0

.t/

#Z
R

u2K.u/ du:
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Based on the regularity conditions in the Appendix, we have the following asymptotic results.

� Sparse data: Assume nhn !1 and supnnh5n <1. Then

p
nhn

h
Ǒ .t/ � ˇ.t/ � h2n�.t/

i
! N

�
0kC1;†sparse.t/

�
; (2.8)

where †sparse.t/ D �
�1.t/ K

�
�.t; t/C �2.t/

�
�=f .t/, 0kC1 is a .k C 1/ � 1 vector with

each entry being 0, and � D E.1=n1/.
� Dense data: Assume �.t; t/ ¤ 0, ni � Mn, Mnhn ! 1, nhn ! 1 and supnnh4n < 1.

Then

p
n
h
Ǒ .t/ � ˇ.t/ � h2n�.t/

i
! N .0kC1;†dense.t// ; (2.9)

where †dense.t/ D �
�1.t/G.t; t/�.t; t/��1.t/.

Based on Theorem 2.1, Ǒ .t/ has the traditional nonparametric convergence rate if the data
are sparse, but has root n convergence rate if the data are dense. In addition, note that, if x D 1,
then Theorem 2.1 simplifies to asymptotic results provided by Kim & Zhao (2013). Based on
the asymptotic normality in Theorem 2.1, confidence intervals for ˇ.t/ are different under
sparse and dense assumptions. Let ´1�˛=2 be the 1 � ˛=2 standard normal quantile. Then an
asymptotic 1 � ˛ confidence interval for the smooth function ˇl .t/, l D 0; : : : ; k is

Ǒ
l .t/�h

2
n O�l .t/˙´1�˛=2.nhn/

�1=2

²h
O�
�1
.t/ K

h
O�.t; t/C O�2.t/

i
O�= Of .t/

i1=2³
l;l

(2.10)

for sparse data or

Ǒ
l .t/ � h

2
n O�l .t/˙ ´1�˛=2n

�1=2

²h
O�
�1
.t/ OG.t; t/ O�.t; t/ O�

�1
.t/
i1=2³

l;l

(2.11)

for dense data, where ˇ.t/ D .ˇ0.t/; ˇ1.t/; : : : ; ˇk.t//
T , Ǒl .t/ is the .l C 1/th element of

Ǒ .t/, O�l .t/ is the .l C 1/th element of O�.t/ and the subscript .l; l/ refers to the .l C 1/th
diagonal element of a matrix. In the aforementioned formulas, O� D n�1

Pn
iD1 n

�1
i

, O�.t; t/,

O�2.t/, Of .t/, O�l .t/, O�
�1
.t/, and OG.t; t/ are consistent estimates of � , �.t; t/, �2.t/, f .t/, �l .t/,

��1.t/ and G.t; t/. In practice, f .t/ can be estimated by kernel density estimate, Of .t/ D
N�1

Pn
iD1

Pni
jD1

Khn.tij � t /, whereKhn.t/ D h
�1
n K.t=hn/. The nonparametric mean func-

tions �.t/, �.t; t 0/ and G.t; t 0/ can be estimated by kernel smoothing methods. For example,
O�lm.t/ D N�1

Pn
iD1

Pni
jD1

xijlxijmKhn.tij � t /, where �lm.t/ is the .l; m/th element of
�.t/ and xijl is the lth element of xij . Then �.t/ and �.t/ can be easily estimated by noting
that var¹y.tij /º D �2.tij /C �.tij ; tij /.

2.3. Proposed unified approach

From Section 2.2, asymptotic results for sparse and dense longitudinal data are essentially dif-
ferent, and thus, a subjective choice between these two situations poses challenges for statistical
inference, which motivates us to find a unified approach. In this section, we propose a uni-
fied self-normalized central limit theorem that can adapt to both sparse and dense cases for
the mixed-effects time-varying coefficient model (1.2). Let Un.t/ D H�1n WnH�1n ; where Hn is
defined in (2.2), and

© 2016 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 44 Time-varying coefficient models 273

Wn D

nX
iD1

8<
: 1

ni

niX
jD1

xij
h
yij � xTij Ǒ .tij /

i
K

�
tij � t

hn

�9=
;

�

8<
: 1

ni

niX
jD1

xTij
h
yij � xTij Ǒ .tij /

i
K

�
tij � t

hn

�9=
; :

We have the following unified central limit theorem.

Theorem 2.2. Assume nhn= logn ! 1 and supn nh
5
n < 1 for sparse data or ni � Mn,

Mnhn ! 1, nh2n= logn ! 1 and supn nh
4
n < 1 for dense data. Under the regularity

conditions in the Appendix,

U n.t/
�1=2

h
Ǒ .t/ � ˇ.t/ � h2n�.t/

i
! N.0kC1; IkC1/

in both sparse and dense settings, where IkC1 is the .k C 1/ � .k C 1/ identity matrix.

Note that the central limit theorem proposed in Kim & Zhao (2013) is a special case of
Theorem 2.2 if x D 1 is assumed in model (1.2). Based on Theorem 2.2, a unified asymptotic
pointwise 1 � ˛ confidence interval for ˇl .t/, l D 0; : : : ; k can be written as follows:

Ǒ
l .t/ � h

2
n O�l .t/˙ ´1�˛=2

h
Un.t/1=2

i
l;l
: (2.12)

The confidence intervals (2.10) and (2.11) in section 2.2 require estimates of the within-
subject covariance function �.t; t/, the overall noise variance function �2.t/ and the condi-
tional expectation G.t; t/; which need extra smoothing procedures, but (2.12) does not need
such estimates and can be used for both sparse and dense cases through the self-normalizer
Un.t/1=2.

Because of the bias term h2n�l .t/, it is possible that the estimate Ǒl .t/ is outside the confi-
dence interval. Because it is difficult to estimate the bias h2n�.t/ in practice due to unknown
derivatives f

0
, ˇ
0

, ˇ
00

and�
0

, we use the same kernel function as in Kim & Zhao (2013),K.u/ D
2G.u/ � G.u=

p
2/=
p
2, where G.u/ is the standard normal density. Then

R
R
u2K.u/ du D 0

and therefore �.t/ D 0kC1. This obviously does not solve the bias problem. For instance, if
f , ˇ and � are four times differentiable, then we have the higher order bias term O.h4n/. As
Kim & Zhao (2013) stated, the bias problem is an inherently difficult problem and no good
solutions exist so far. Our simulation results in section 3.1 demonstrate that the new proposed
self-normalized confidence interval works well.

For kernel regression, the selection of bandwidth is generally more important than the selec-
tion of kernel functions. As stated in Wu & Chiang (2000), under-smoothing or over-smoothing
is mainly caused by inappropriate bandwidth choices in practice but is rarely influenced by
kernel shapes. The asymptotic optimal bandwidth depends on n and ni , and it should be able
to balance the asymptotic bias term h2n�.t/ and the asymptotic variance term Un.t/. How-
ever, as proved in Theorem 2.1, asymptotic properties of the variance term Un.t/ depend on
whether the data are dense or sparse and how ni increases with n. Therefore, it is not easy to
derive a unified asymptotic optimal bandwidth. To select the bandwidth for Ǒ in practice, we
use the idea of ‘leave-one-subject-out’ cross-validation procedure suggested by Rice & Silver-
man (1991). Let Ǒ�i .t/ be a kernel estimator of ˇ.t/ computed using the data with all repeated
measurements of the i th subject left out and define
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CV.hn/ D
nX
iD1

1

ni

niX
jD1

°
yij � xTij Ǒ�i .tij /

±2
(2.13)

to be the subject-based cross-validation. The optimal bandwidth is then defined to be the
unique minimizer of CV.hn/. Based on remark 2.3 of Wu & Chiang (2000), the aforementioned
CV bandwidth approximately minimizes the following average squared error:

ASE. Ǒ / D
nX
iD1

1

ni

niX
jD1

h
xTij

°
ˇ.tij / � Ǒ .tij /

±i2
:

3. Simulation and real data application

3.1. Simulation study

We follow Kim & Zhao (2013) to construct the subject-specific random trajectory vi .�/.
Consider the model

yij D

2X
lD0

ˇl .tij /xijl .tij /C

3X
mD1

˛imˆm.tij /C ��ij ; i D 1; : : : ; nI j D 1; : : : ; ni ;

where ˛im � N.0; !m/ and �ij � N.0; 1/. Let ˇ0.t/ D 5.t � 0:6/2, ˇ1.t/ D cos.3	t/,
ˇ2.t/ D sin.2	t/, ˆ1.t/ D 1, ˆ2.t/ D

p
2 sin.2	t/, ˆ3.t/ D

p
2 cos.2	t/, .!1; !2; !3/ D

.0:6; 0:3; 0:1/ and � D 1. Then the variance function �.t; t/ D 0:6 C 0:6 sin2.2	t/ C
0:2 cos2.2	t/. The time points tij are uniformly distributed on Œ0; 1�. To generate covariates, let
bi1 � N.0; 0:3/, bi2 � N.0; 0:3/, 
ij � N.0; 1/, ıij � N.0; 1/ and '.t/ D

p
2.t C 1/; then set

xij0 D 1, xij1 D bi1'.tij /C
ij and xij2 D bi2'.tij /Cıij for i D 1; : : : ; n and j D 1; : : : ; ni .
We consider two sample sizes, n D 200 or 400. Under this setting, we have the following con-

ditional expectations: �.tij / D E
�

xijxT
ij
j tij

	
D diag¹1; 0:6.tij C 1/2 C 1; 0:6.tij C 1/2 C 1º

and

G.tij ; tij / D lim
t
ij
0!tij

E
�

xijxTij 0 j tij ; tij 0
	
D diag¹1; 0:6.tij C 1/

2; 0:6.tij C 1/
2º:

For the vector .n1; n2; : : : ; nn/ of the number of repeated measurements on each subject, we
consider four cases

N1 W ni � U Œ¹5; 6; : : : ; 15º�I N2 W ni � U Œ¹15; 16; : : : ; 35º�I (3.1)

N3 W ni � U Œ¹80; 81; : : : ; 120º�I N4 W ni � U Œ¹150; 151; : : : ; 250º�: (3.2)

Here, U ŒD� represents the discrete uniform distribution on a finite set D. Five confidence
intervals are compared in our simulation study:

(1) The self-normalization-based confidence interval in (2.12) (SN);
(2) The asymptotic normality-based confidence interval (2.10) for sparse data (NS);
(3) The asymptotic normality-based confidence intervals (2.11) for dense data (ND);
(4) The bootstrap confidence interval with 200 bootstrap replications from sampling

subjects with replacement (BS);
(5) The infeasible confidence interval (NSD)
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Ǒ
l .t/ � h

2
n O�l .t/˙ ´1�˛=2n

�1=2Sl;l ; (3.3)

where S D
°
��1.t/G.t; t/��1.t/.1 � O�/�.t; t/C ��1.t/ O� K

�
�.t; t/C �2.t/

�
=

Œhnf .t/�º
1=2.

The confidence interval NSD is used as a benchmark to compare the performance of the
other confidence intervals, because NSD uses the true theoretical limiting variance function
(2.7). Note, however, that NSD is practically infeasible, because it depends on many unknown
functions. Similar to Kim & Zhao (2013), we use the true functions �.t; t/, �2.t/, f .t/, �.t/ and
G.t; t/ for NS, ND and NSD, which gives an advantage to these three methods and removes
the impact of different estimation methods. Note that the proposed self-normalization-based
confidence interval SN only requires a point estimate of ˇ.t/ and thus is very easy to implement.
We would like to demonstrate that our new method SN works comparably or better than NS
and ND even when true functions are used for NS and ND.

To measure the performance of different confidence intervals, we use the following two
criteria: empirical coverage probabilities and lengths of confidence intervals. Let t1 <

� � � < t20 be 20 grid points evenly spaced on Œ0:1; 0:9�. For each grid point tj .j D

1; : : : ; 20/ and a given confidence level, we construct confidence intervals for smooth func-
tions ˇ0.tj /, ˇ1.tj / and ˇ2.tj / and compute the empirical coverage probabilities based
on 500 replications. Using 500 replications is restricted by the computing time based
on a personal computer with Intel(R) Core(TM) i5 CPU, 4-GB installed memory and
32-bit operating system. For each of the five confidence intervals, the empirical cover-
age probabilities and lengths are averaged at 20 grid points. The bandwidth used for
each replicate is the average of 20 optimal bandwidths in (2.13) based on 20 replications
(Kim & Zhao, 2013).

The results for ˇ1.t/ and ˇ2.t/ are showed in Tables 1–4. The bandwidths for N1, N2, N3
and N4 when n D 200 are 0.0548, 0.0471, 0.0359 and 0.0334, respectively. The bandwidths
for N1, N2, N3 and N4 when n D 400 are 0.0498, 0.0428, 0.0327 and 0.0273, respectively. It
can easily be seen that the performance of the confidence intervals NS and ND for ˇ1.t/ and
ˇ2.t/ strongly depends on the spareness or denseness of the data for both sample sizes. When
the number of repeated measurements on each subject is increased from the sparse setting N1
to the dense setting N4, the performance of the sparse confidence interval NS becomes worse,

Table 1. Average empirical coverage percentages and lengths, in parentheses, for ˇ1.t/ of five
confidence intervals when n D 200

1� ˛ N SN NS ND NSD BS

90% N1 85.7(0.218) 82.1(0.198) 56.4(0.115) 87.4(0.226) 88.8(0.238)
N2 87.1(0.169) 76.6(0.132) 70.4(0.115) 88.5(0.174) 88.7(0.177)
N3 88.6(0.133) 61.2(0.074) 82.6(0.115) 89.8(0.136) 89.0(0.135)
N4 89.2(0.126) 54.5(0.057) 86.3(0.115) 90.1(0.128) 89.2(0.126)

95% N1 91.4(0.261) 88.4(0.236) 64.1(0.137) 92.6(0.270) 93.7(0.283)
N2 92.7(0.201) 84.1(0.157) 78.1(0.137) 93.4(0.207) 93.7(0.210)
N3 93.2(0.159) 68.8(0.088) 88.9(0.137) 94.1(0.163) 93.5(0.161)
N4 93.7(0.150) 61.4(0.068) 91.9(0.137) 94.6(0.153) 93.7(0.151)

SN, the self-normalized confidence interval in (2.12); NS and ND, the asymptotic normality-
based confidence intervals (2.10) and (2.11) assuming sparse and dense data, respectively;
NSD, the infeasible confidence interval in (3.3); BS, the bootstrap confidence interval; Ni ,
i D 1; : : : ; 4, the number of measurements on individual subjects defined in (3.1) and (3.2).
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Table 2. Average empirical coverage percentages and lengths, in parentheses, for ˇ2.t/ of five
confidence intervals when n D 200

1� ˛ N SN NS ND NSD BS

90% N1 86.6(0.219) 83.0(0.198) 57.1(0.115) 88.2(0.226) 88.9(0.232)
N2 86.9(0.169) 77.1(0.132) 70.6(0.115) 88.2(0.174) 88.1(0.174)
N3 88.5(0.134) 61.6(0.074) 82.8(0.115) 89.6(0.136) 88.7(0.135)
N4 88.9(0.126) 54.0(0.057) 85.8(0.115) 90.1(0.128) 89.0(0.127)

95% N1 92.0(0.260) 89.3(0.236) 65.2(0.137) 93.5(0.270) 93.8(0.276)
N2 93.0(0.201) 84.4(0.157) 78.6(0.137) 94.0(0.207) 93.7(0.208)
N3 93.5(0.160) 69.8(0.088) 89.3(0.137) 94.1(0.163) 93.8(0.161)
N4 93.7(0.150) 60.0(0.068) 91.3(0.137) 94.2(0.153) 93.6(0.150)

SN, the self-normalized confidence interval in (2.12); NS and ND, the asymptotic normal-
ity based confidence intervals (2.10) and (2.11) assuming sparse and dense data, respectively;
NSD, the infeasible confidence interval in (3.3); BS, the bootstrap confidence interval; Ni ,
i D 1; : : : ; 4, the number of measurements on individual subjects defined in (3.1) and (3.2).

Table 3. Average empirical coverage percentages and lengths, in parentheses, for ˇ1.t/ of five
confidence intervals when n D 400

1� ˛ N SN NS ND NSD BS

90% N1 86.5(0.163) 82.9(0.147) 54.9(0.082) 87.3(0.166) 88.8(0.174)
N2 87.9(0.125) 78.1(0.098) 69.2(0.082) 88.7(0.126) 89.4(0.130)
N3 88.7(0.097) 63.6(0.055) 82.2(0.082) 89.2(0.098) 89.1(0.098)
N4 88.4(0.091) 53.7(0.042) 84.8(0.082) 89.2(0.092) 88.5(0.091)

95% N1 92.3(0.194) 89.5(0.175) 63.1(0.097) 93.3(0.198) 94.1(0.207)
N2 93.6(0.149) 85.6(0.117) 78.0(0.097) 94.1(0.150) 94.5(0.154)
N3 94.2(0.116) 72.0(0.065) 88.9(0.097) 94.6(0.117) 94.5(0.117)
N4 94.0(0.108) 62.2(0.051) 91.0(0.097) 94.4(0.109) 94.0(0.109)

SN, the self-normalized confidence interval in (2.12); NS and ND, the asymptotic normal-
ity based confidence intervals (2.10) and (2.11) assuming sparse and dense data, respectively;
NSD, the infeasible confidence interval in (3.3); BS, the bootstrap confidence interval; Ni ,
i D 1; : : : ; 4, the number of measurements on individual subjects defined in (3.1) and (3.2).

while that of the dense confidence interval ND becomes better. These two confidence intervals
only perform well under their corresponding sparse or dense setting, which further confirms
the theoretical results in Theorem 2.1.

Note that the dense confidence interval ND gives the same widths for each simulation setting
at a certain nominal level. This is because asymptotic variances for ND at 20 grid points are
the same for each simulation setting. In addition, because we use the same way to generate two
covariates xij1 and xij2, the diagonal elements in �.t/ and G.t; t/ corresponding to ˇ1.t/ and
ˇ2.t/ in (2.10), (2.11) and (3.3) are the same at a given grid point. Hence, the widths of the
confidence intervals of ˇ1.t/ and ˇ2.t/ are the same for NSD, NS and ND .

Compared with NS and ND, the proposed self-normalization-based confidence interval SN
provides more stable and better performance. First, it has similar widths and coverage prob-
abilities as the bootstrap confidence interval (BS) and both of them perform closely to the
infeasible confidence interval NSD; second, its computing time is much shorter than for the
bootstrap confidence interval; finally, asymptotic properties of the self-normalization method
have been established in this article, whereas theoretical properties of the bootstrap procedure
for longitudinal data have not been developed as far as we know. We also did simulation stud-
ies on some larger sample sizes, for example, n D 3000, and the proposed self-normalized
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Table 4. Average empirical coverage percentages and lengths, in parentheses, for ˇ2.t/ of five
confidence intervals when n D 400

1� ˛ N SN NS ND NSD BS

90% N1 86.4(0.162) 82.8(0.147) 55.0(0.082) 87.6(0.166) 88.1(0.170)
N2 88.2(0.125) 77.8(0.098) 68.8(0.082) 88.9(0.126) 88.9(0.128)
N3 88.8(0.097) 62.8(0.055) 81.7(0.082) 89.0(0.098) 88.8(0.097)
N4 90.2(0.091) 56.0(0.042) 86.4(0.082) 90.8(0.092) 90.1(0.091)

95% N1 93.1(0.194) 90.4(0.175) 63.9(0.097) 93.9(0.198) 94.4(0.203)
N2 93.8(0.148) 85.7(0.117) 77.5(0.097) 94.2(0.150) 94.4(0.152)
N3 94.0(0.115) 71.1(0.065) 88.8(0.097) 94.5(0.117) 94.1(0.116)
N4 95.0(0.108) 64.0(0.051) 92.5(0.097) 95.5(0.109) 95.0(0.109)

SN, the self-normalized confidence interval in (2.12); NS and ND, the asymptotic normal-
ity based confidence intervals (2.10) and (2.11) assuming sparse and dense data, respectively;
NSD, the infeasible confidence interval in (3.3); BS, the bootstrap confidence interval; Ni ,
i D 1; : : : ; 4, the number of measurements on individual subjects defined in (3.1) and (3.2).

method still works very well and performs better than sparse and dense intervals and has similar
performance to the bootstrap method under all cases we tried.

3.2. Application to Baltimore MACS data

In this section, we apply the self-normalization-based confidence interval to the HIV part of
the Baltimore MACS data which came from the Baltimore MACS Public Data Set Release
PO4 (1984–1991) provided by Dr. Alfred Saah. CD4 cells can be destroyed by human immun-
odeficiency virus (HIV), and thus, the percentage of the CD4 cells in the blood of a human
body will change after HIV infection. Because of this, CD4 cell count and the percentage in the
blood are the most popular used markers to monitor the progression of the disease.

The HIV status of 283 homosexual men who were infected with HIV during the follow-up
period between 1984 and 1991 was included in this data set. All individuals were scheduled
to have measurements made twice a year. Because many patients missed some of their sched-
uled visits and HIV infections happened randomly during the study, numbers of repeated
measurements for each patient are not equal and their measurement times are different. Fur-
ther details about the design, methods and medical implications of the study can be found in
Kaslow et al. (1987).

The response variable is the CD4 percentage over time after HIV infection. Three covariates
are as follows: patient’s age, smoking status with 1 as smoker and 0 as nonsmoker and the CD4
cell percentage before the infection. The aim of our statistical analysis is to evaluate the effects
of smoking, pre-HIV infection CD4 percentage and age at HIV infection on the mean CD4
percentage after the infection. Define tij to be the time (in years) of the j th measurement of the
i th individual after HIV infection. In this data set, patients have a minimum of 1 measurement
and a maximum of 14 measurements. Let Yij be the i th individual’s CD4 percentage at time
tij and X1i be the smoking status for the i th individual. We centre age and pre-infection CD4
percentage using the sample average. Then we construct the time-varying coefficient model as
follows:

Yij D ˇ0.tij /C ˇ1.tij /X1i C ˇ2.tij /X2i C ˇ3.tij /X3i C �ij ;

where ˇ0.t/ represents the baseline CD4 percentage and can be interpreted as the mean CD4
percentage at time t for a nonsmoker with average pre-infection CD4 percentage and average
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age at HIV infection. Therefore, ˇ1.t/, ˇ2.t/ and ˇ3.t/ represent time-varying effects for smok-
ing, age at HIV infection and pre-infection CD4 percentage, respectively, on the post-infection
CD4 percentage at time t .

We use the kernel smoothing method stated in (2.1) to estimate smoothing functions ˇ0.t/,
ˇ1.t/, ˇ2.t/ and ˇ3.t/. The bandwidth was chosen by using the leave-one-subject-out cross-
validation method, and its value is 0.7074. This real data set is most likely to be the sparse
case. However, based on Tables 1–4, even for the case of N1, the proposed self-normalized
method (SN) provides better confidence interval than the sparse confidence interval (NS). In
addition, as we discussed before, the sparse confidence interval (2.10) requires estimates of
many unknown quantities and some of them are not easy to estimate, while the self-normalized
confidence interval (2.12) does not require any additional estimates besides the estimates of
regression coefficients. Therefore, self-normalization-based 95% confidence intervals were con-
structed for ˇ0.t/; : : : ; ˇ3.t/ at 100 equally spaced time points between 0.1 and 5.9 years.
We also constructed bootstrap 95% intervals at the same 100 time points, based on 1000
bootstrap replications. Figure 1 depicts fitted coefficient functions (solid curves) with 95% self-
normalization-based confidence intervals (dashed curves) and bootstrap confidence intervals
(dotted curves). It can easily be seen that self-normalization-based confidence intervals are very
close to bootstrap confidence intervals. Indeed, they almost overlap with each other. However,
the computing time for the self-normalization-based confidence interval is much shorter than

Fig. 1. Application to Baltimore MACS data. Estimated coefficient curves for the baseline CD4 percentage
and the effects of smoking, age and pre-infection CD4 percentage on the post-infection CD4 percentage.
The value of the selected bandwidth is 0.7074. Solid curves, estimated effects; dashed curves, 95% self-
normalization-based confidence intervals; dotted curves, 95% bootstrap pointwise confidence intervals.
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the bootstrap confidence interval. The former one only takes approximately 5 seconds, whereas
the latter one needs almost 50 minutes based on a personal computer with Intel(R) Core(TM)
i5 CPU, 4-GB installed memory and 32-bit operating system.

Based on the constructed confidence intervals, the mean baseline CD4 percentage of the
population decreases with time, but at a rate that appears to be slowing down at 4 years after the
infection. Because confidence intervals for smoking and age of HIV infection cover 0 most of
the time, these two covariates do not significantly affect the post-infection CD4 percentage. The
pre-infection CD4 percentage appears to be positively associated with higher post-infection
CD4 percentage, which is expected. The aforementioned findings basically agree with Wu &
Chiang (2000), Fan & Zhang (2000), Huang et al. (2002) and Qu & Li (2006).

4. Discussion

In this article, we proposed a unified inference for the time-varying coefficient model (1.2)
for the longitudinal data based on the new established unified self-normalized central limit
theorem. The new inference tool allows us to do inference for the longitudinal data without
subjectively deciding whether the data are sparse or dense. The effectiveness of the proposed
unified inference is demonstrated through a simulation study and an analysis of Baltimore
MACS data. However, we want to point out that our method only unifies the inference of
the sparse and dense situations discussed in our article. It requires more research to provide a
unified inference that is applicable to all cases.

The weighted local constant estimators that we considered in this article only use one
smoothing parameter, which may not be able to provide adequate smoothing for all coefficient
curves at the same time. Wu & Chiang (2000) proposed the componentwise local least squares
criteria to estimate time-varying coefficients using different amounts of smoothing. The reason
that we use one smoothing parameter is for the simplicity of computation, and our proposed
unified inference can be extended to the case of different smoothing parameters as well.

For time-varying coefficient models, the commonly asked questions are whether coefficient
functions ˇ.�/ vary over time and whether certain covariates are significant. Therefore, we may
wish to test whether a certain component of ˇ.�/ is identically zero or constant. The gener-
alized likelihood ratio statistics for the nonparametric testing problems proposed in Fan et
al. (2001) might be considered, but the theoretical and practical aspects for longitudinal data
would require substantial development.
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Appendix

The following conditions are imposed to facilitate the proof and are adopted from Wu &
Chiang (2000), Huang et al. (2002) and Kim & Zhao (2013).
Regularity conditions:
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(1) The observation time points follow a random design in the sense that tij , for j D
1; : : : ; ni and i D 1; : : : ; n, are chosen independently from an unknown distribu-
tion with a density f .�/ on a finite interval. The density function f .�/ is continuously
differentiable in a neighbourhood of t and is uniformly bounded away from 0 and
infinity.

(2) In a neighbourhood of t , ˇ.�/ is twice continuously differentiable, �2.�/ is continuously
differentiable. In a neighbourhood of .t; t/, �.t; t

0
/ D cov¹vi .t/; vi .t

0
/º is continuously

differentiable and �.t; t/ D limt 0!t cov¹vi .t/; vi .t
0
/º. Furthermore, �2.t/ < 1 and

�.t; t/ <1.
(3) ¹vi .�/ºi , ¹tij ºij , ¹�ij ºij are independent and identically distributed and mutually

independent.
(4) ¹xij ºij , ¹vi .�/ºi , ¹�ij ºij are mutually independent. ¹xij ºi are independent and identi-

cally distributed. For the same i , xi1; : : : ; xini have identical distribution and can be
correlated. E

�
kxij k �



xij 0


 � 

xij 00



 jtij ; tij 0 ; tij 00 � <1 for 1 	 j ¤ j
0
¤ j

00
	 ni .

(5) �.t/ is invertible and differentiable.
(6) E¹jvi .�/C �.�/�ij j4º is continuous in a neighbourhood of t and E¹jvi .�/C �.�/�ij j4º <
1.

(7) K.�/ is bounded and symmetric and has a bounded support and a bounded derivative.

Because �2.t/ and �.t; t/ are unknown in most applications and the unified approach that
we propose does not need the specific structures of �2.t/ and �.t; t/, therefore we do not require
further specific structures for �2.t/ and �.t; t/, except for their continuity in the aforemen-
tioned condition 2. These conditions are not the weakest possible conditions. For instance, in
condition 7, actually we only need the first moment of K.�/ to be 0 so that the bias term con-
taining the first order of h will be 0. K.�/ is allowed to be negative. The symmetry assumption
is traditionally used for kernel function and will automatically satisfy the condition of zero first
moment. In addition, the requirement for bounded support for the kernelK.�/ could be relaxed
as well. All asymptotic results still hold if we put a restriction on the tail of K.�/. For example,
lim supt!1 jK.t/t

5j <1 (Fan & Gijbels, 1992). In the following, without confusing, we will
omit the subscript n of hn for the simplicity of notation.

Proof of theorem 2.1. Based on (2.3), asymptotic results for sparse or dense longitudinal data
depend on the limiting distribution of �i , which is defined in (2.4). In order to obtain the
limiting distribution of �i , we define the following notation.

Hn D
nX
iD1

Vi ; Vi D
1

ni

niX
jD1

Vij ; Vij D xijxTijK
�
tij � t

h

�
;

bn D
nX
iD1

�i ; �i D
1

ni

niX
jD1

�ij ; �ij D xij
h
xTijˇ.tij / � xTijˇ.t/

i
K

�
tij � t

h

�
;

�.tij /DE
�

xijxTij jtij
	
; �1.tij /DE

�
x2ijlx

2
ijr jtij

	
; �2.tij /DE

�
X2ijmxijxTij jtij

	
;

where l; r;m D 0; : : : ; .k C 1/. Throughout this article, we consider the element-wise variance
of a matrix. Based on regularity conditions 1, 2, 3, 4, 5, 7, Taylor’s expansion and symmetry of
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the kernel function K.�/, we have the following results:

E.Vij / DE ¹E.Vij jtij /º D E
²

E
�

xijxTij jtij
	
K

�
tij � t

h

�³

Dh

Z h
�.t/C �

0

.t/ht0 C o.h/
i
K.t0/

h
f .t/C f

0

.t/ht0 C o.h/
i

dt0

D�.t/hf .t/
h
1CO.h2/

i
and

var.Vij .l; r// D var
�
xijlxijrK

�
tij � t

h

��

D E

´�
xijlxijrK

�
tij � t

h

��2μ
�

²
E
�
xijlxijrK

�
tij � t

h

��³2

D E
�
�1.tij /K

2

�
tij � t

h

��
�O.h2/Dh�1.t/f .t/ KCo.h/�O.h

2/DO.h/;

where .l; r/ refers to the element of Vij in the lth row and the rth column. Therefore,
var.Vij / D O.h/. Similarly, we have the following results for �ij :

E.�ij / D E
²

E
²

xij
h
xTijˇ.tij / � xTijˇ.t/

i
K

�
tij � t

h

�
jtij

³³

D E
²
�.tij /

�
ˇ.tij / � ˇ.t/

�
K

�
tij � t

h

�³

D h3f .t/�.t/

"
ˇ
0

.t/f
0
.t/

f .t/
C
ˇ
00

.t/

2
C ��1.t/�

0

.t/ˇ
0

.t/

#Z
t20K.t0/ dt0 C o.h3/

D �.t/h3f .t/�.t/C o.h3/

and

var.�ijm/ D var
²
xijm

h
xTijˇ.tij / � xTijˇ.t/

i
K

�
tij � t

h

�³

D E

´
E

´�
xijmxTij

�
ˇ.tij / � ˇ.t/

�
K

�
tij � t

h

��2
jtij

μμ
�
h
O.h3/

i2

D

Z �
ˇ.tij / � ˇ.t/

�T
�2.tij /

�
ˇ.tij / � ˇ.t/

�
K2

�
tij � t

h

�
f .tij / dtij �O.h

6/

D O.h3/;

where �.t/ D
h
ˇ
0
.t/f

0
.t/

f.t/
C ˇ

00
.t/
2
C ��1.t/�

0

.t/ˇ
0

.t/
i R

R
u2K.u/ du, �ijm and xijm are the

mth elements of �ij and xij , respectively. Therefore, var.�ij / D O.h3/. In both sparse and
dense cases, E.Vi jni / is not random, so we have var.Vi / D E ¹var.Vi jni /º 	 var.Vij /.
Therefore, var.Hn/ D O.nh/. Then

Hn D E.Hn/COp
�p

var.Hn/
	
D

�
1COp

²
h2 C

1
p
nh

³�
n�.t/hf .t/:

Similarly, bn D n�.t/h3f .t/�.t/C op.nh3/COp.
p
nh3/. Hence,

H�1n bn D
��1.t/

h
n�.t/h3f .t/�.t/C op.nh

3/COp.
p
nh3/

i
�
1COp

�
h2 C

q
1
nh

��
nhf .t/

D h2�.t/C ın;
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where ın D op.h2/COp

�q
h
n

�
.

For dense longitudinal data, under the given conditions, we have ın D op.1=
p
n/ and�

nh2f 2.t/
��1

var.
Pn
iD1 �i / � G.t; t/�.t; t/. For any unit vector d 2 R

kC1, let dT
Pn
iD1 �i DPn

iD1 dT �i D
Pn
iD1 �i , where �i D dT �i . Then we have E.�2i / D O.h

2/ and E.�3i / D O.h
3/

based on the regularity condition 4. By the Lyapunov central limit theorem,
Pn
iD1 �i

h
p
nf.t/

!

N.0kC1;G.t; t/�.t; t//. Similarly, for sparse longitudinal data, because �1; : : : ; �n are indepen-
dent and identically distributed, the result follows from ın D op.1=

p
nh/ and var.

Pn
iD1 �i / �

nh� Kf .t/Œ�.t; t/C �
2.t/��.t/.

Proof of theorem 2.2. Based on theorem 2.1, if we can show nUn.t/ ! †dense.t/ and
nhUn.t/! †sparse.t/, theorem 2.2 can be proved.

Denote Kij D K
�
tij�t

h

	
. Let

Wn D

nX
iD1

8<
: 1ni

niX
jD1

xij
h
yij � xTij Ǒ .tij /

i
Kij

9=
;
8<
: 1

ni

niX
jD1

xTij
h
yij � xTij Ǒ .tij /

i
Kij

9=
;

D

nX
iD1

�
�i�

T
i C �i˛

T
i C ˛i�

T
i C ˛i˛

T
i

	
;

where �i D
1
ni

Pni
jD1

xij
�
vi .tij /C �.tij /�ij

�
Kij and ˛i D

1
ni

Pni
jD1

xij
h
xT
ij
ˇ.tij /

�xT
ij
Ǒ .tij /

i
Kij . Similarly as Kim & Zhao (2013), by theorem 3.1 in Li & Hsing (2010),ˇ̌̌

Ǒ .´/ � ˇ.´/
ˇ̌̌
D Op.ln/1kC1 uniformly for ´ in the neighbourhood of t , where ln D h2 Cq

logn
n

for dense data, ln D h2 C

q
logn
nh

for sparse data and 1kC1 is a .k C 1/ � 1 vector with

all elements equal to 1. Then ˛i D Op.j˛i j/ D Op.ln/
1
ni

Pni
jD1

ˇ̌̌
xijxT

ij
1kC1Kij

ˇ̌̌
. Because

�i D
1
ni

Pni
jD1

�ij , which is defined in (2.4), we can obtain

nX
iD1

ˇ̌̌
�i˛

T
i C ˛i�

T
i C ˛i˛

T
i

ˇ̌̌
D Op.ln/

nX
iD1

1

n2
i

niX
jD1

ˇ̌
�ij

ˇ̌ niX
jD1

ˇ̌̌
xTij

�
xTij 1kC1

	
Kij

ˇ̌̌

COp.ln/

nX
iD1

1

n2
i

niX
jD1

ˇ̌̌
xijxTij 1kC1Kij

ˇ̌̌ niX
jD1

ˇ̌̌
�Tij

ˇ̌̌

COp.l
2
n/

nX
iD1

1

n2
i

niX
jD1

ˇ̌̌
xijxTij 1kC1Kij

ˇ̌̌ niX
jD1

ˇ̌̌
xTij

�
�

xTij 1kC1
	
Kij

ˇ̌̌
:

Based on the proof of theorem 2.1,

�ij D E.�ij /COp
�q

var.�ij /
	
D Op

 r
E
�
�ij �

T
ij

	!
D Op.

p
h/;

xijxTijKij D Vij D E.Vij /COp
�p

var.Vij /
	
D Op.h/COp.

p
h/ D Op.

p
h/:

Because xijxT
ij

1kC1Kij D xijxT
ij
Kij 1kC1, xT

ij

�
xT
ij

1kC1
	
Kij D 1T

kC1
xijxT

ij
Kij and

l2n D o.ln/, then
Pn
iD1

ˇ̌̌
�i˛

T
i
C ˛i�

T
i C ˛i˛

T
i

ˇ̌̌
D Op.nhln/. Recall that �1; : : : ; �n are
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independent, then

Wn D E

 
nX
iD1

�i�
T
i

!
COp

0
@
vuutvar

 
nX
iD1

�i�
T
i

!1ACOp.nhln/D nX
iD1

E
�
�i�

T
i

	
COp.xn/;

where xn D

rPn
iD1 var

�
�i�

T
i

	
C nhln. By Theorem 2.1, we have nH�1n

Pn
iD1 E

�
�i�

T
i

	
H�1n ! †dense.t/ for dense data or nhH�1n

Pn
iD1 E

�
�i�

T
i

	
H�1n ! †sparse.t/ for sparse data.

Therefore, it remains to show that xn D o.nh2/ for dense data and xn D o.nh/ for sparse data.

For the dense data, we have
Pn
iD1 var

�
�i�

T
i

	
D O.nh4/ based on the regularity condi-

tion 6 and thus xn D O.
p
nh2 C nh3 C h

p
n logn/ D o.nh2/. For the sparse data, we havePn

iD1 var
�
�i�

T
i

	
D O.nh/ and therefore xn D O.

p
nhC nh3 C

p
nh logn/ D o.nh/.
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